Two uniform strings of mass per unit length u and 4u, and length L and 2L, respectively, are joined at point O, and tied at two fixed ends P and Q, as shown in the figure. The strings are under a uniform tension T. If we define the frequency v0 = 1/ 2L *[√T/u], which of the following statement(s) is(are) correct?

🔍 Question Breakdown

Scenario: Two strings are joined at point O and tied at fixed ends P and Q.

  • String 1: Mass/length = μ, Length = L.

  • String 2: Mass/length = , Length = 2L.

  • TensionT in both strings.

  • Given: Frequency f0=12πTμ.

Task: Determine which statements about vibrational modes (nodes/antinodes at O) are correct.


🎯 Key Concepts

  1. Standing Waves: Nodes (zero displacement) and antinodes (max displacement) form based on boundary conditions.

  2. Frequency Formula: For a string of length l, mass/length μ, and tension T:

    f=n2lTμ,n=harmonic number.
  3. Composite Strings: Joined strings must vibrate at the same frequency with matching boundary conditions at O.


📝 Detailed Analysis of Each Option

Option AWith a node at O, the minimum frequency is f0.

Step 1: For a node at O, both strings vibrate in their fundamental modes (1st harmonic).

  • String 1 (length L):

    f1=12LTμ=f0(since f0 is defined as 12πTμ).
  • String 2 (length 2L):

    f2=12(2L)T4μ=14L12Tμ=f04.

Step 2: To match frequencies, String 2 must vibrate in its 4th harmonic (n=4):

f2(4)=4×f04=f0.

Conclusion: Minimum frequency = f0✅ Option A is correct!


Option BWith an antinode at O, the minimum frequency is 2f0.

Step 1: For an antinode at O, both strings have free ends at O, vibrating in odd harmonics.

  • String 1 (length L): Fundamental frequency with antinode at O:

    f1=14LTμ=f02.
  • String 2 (length 2L): Fundamental frequency with antinode at O:

    f2=14(2L)T4μ=18L12Tμ=f08.

Step 2: To match frequencies, the LCM of f0/2 and f0/8 is f0/2.
Conclusion: Minimum frequency = f0/2not 2f0❌ Option B is incorrect!


Option CWith a node at O, the composite string has 6 nodes (including ends).

Step 1: For node at O:

  • String 1 has nodes at P and O (2 nodes).

  • String 2 has nodes at O and Q (2 nodes).
    Step 2: Total nodes = P, O, Q (3 nodes).
    Conclusion: Option C claims 6 nodes—way off! ❌ Option C is incorrect!


Option DNo vibrational mode with an antinode at O is possible.

Step 1: From Option B, the minimum frequency with antinode at O is f0/2, but String 2 cannot vibrate at this frequency without fractional harmonics (physically impossible).
Step 2: Frequencies never align for antinodes.
ConclusionNo antinode mode exists✅ Option D is correct!


🎉 Final Answer

Correct OptionsA and D


🌟 Key Takeaways

  • Node at O: Minimum frequency = f0, with 3 nodes total.

  • Antinode at O: Impossible due to mismatched harmonics.

  • Always verify boundary conditions and harmonic compatibility!

For more fun physics breakdowns, visit Jeepyq.fun! 🚀💡


0 Comments

Post a Comment

Post a Comment (0)

Previous Post Next Post