The dimensions of a cone are measured using a scale with a least count of 2 mm. The diameter of the base and the height are both measured to be 20.0 cm. The maximum percentage error in the determination of the volume is ______.

 To determine the maximum percentage error in the volume of the cone, we need to analyze how errors in the measurements of the diameter and height propagate to the volume. The volume 

V of a cone is given by:

V=13πr2h

where:

  • r is the radius of the base,

  • h is the height of the cone.


Step 1: Express Volume in Terms of Diameter

The diameter d of the base is related to the radius by r=d2. Substituting this into the volume formula:

V=13π(d2)2h=112πd2h

Step 2: Relative Errors in Measurements

The least count of the scale is 2mm=0.2cm. The diameter d and height h are both measured as 20.0cm. The absolute error in each measurement is Δd=Δh=0.2cm.

The relative errors in d and h are:


Step 3: Error Propagation in Volume

The volume V depends on d2 and h. Using the formula for error propagation, the relative error in V is:

ΔVV=2Δdd+Δhh

Substitute the relative errors:


Step 4: Maximum Percentage Error

The maximum percentage error in the volume is:

ΔVV×100=3%

Final Answer:

The maximum percentage error in the determination of the volume is:

3%

0 Comments

Post a Comment

Post a Comment (0)

Previous Post Next Post